Part V- Chapter 18	Sampling Distribution Models (SDMs)
Proportion	Ratio of: number of successes for categorical data.
	total
	[think percent]
We want to know the true population proportion (mean),, but are often forced to work/estimate with a sample proportion (mean), Sampling variability (sampling error) Sampling Distribution Model (SDM) (Model of Possible Samples which shows the natural	P (μ) We want to know about these We have these to work with Population of the relationship between samples and populations. We have these to work with Rendering Selections Stabelist No sample fully and exactly describes the population; sample proportions and means will vary from sample to sample. It is not just unavoidable — it's predictable! (with SDMs) Shows how a statistic (sample proportion or mean) would vary in repeated (think infinite) samples of size n .
which shows the natural sampling variability of a particular sample size)	We used to focus on the data, and derive the statistics from it. Now we focus on the statistic itself. The sample proportion (or mean) becomes our datum, and in our imaginations we compare that statistic to all other values we might have obtained from all the other samples of size n we might have taken.
The sample proportion, \hat{p} , does not have a binomial distribution because it is not the But the SDM for a proportion appears to be and When certain conditions are met, the is a good SDM for a proportion.	number of successes unimodal roughly symmetric Normal model
Assumptions / Conditions for using a Normal model as the SDM for a proportion:	 Assumptions: 1. Independent - sampled values must be independent of each other. Conditions: a) Randomization – SRS or at least representative and not biased. b) 10% Condition – If sampling w/o replacement Then n ≤ 10% of the population. 2. Sample Size - n, must be large enough. Conditions: a) Success/Failure - np ≥ 10 and nq ≥ 10.
Since the number of successes in the sample, X, is, we can obtain the mean and SD of the sample proportion by multiplying the mean and SD of the Binomial by the constant 1/n to get:	a Binomial random variable (n trials, probability p) $\mu(\hat{p}) = p \qquad \qquad \sigma(\hat{p}) = SD(\hat{p}) = \sqrt{\frac{pq}{n}}$

	$N\left(p,\sqrt{\frac{pq}{n}}\right)$
When we can understand and predict the variability of our estimates with SDMs,	we've taken the essential step toward seeing past that variability, so we can understand the world.
Means summarize data	quantitative
As long as the observations are, even if we sample from a skewed or bimodal population	independent
the tells us that the means (or proportions) of repeated random samples	Central Limit Theorem
will tend to follow	a Normal model the sample size grows.
as Central Limit Theorem (CLT)	The sampling distribution model of the sample mean (and proportion) is approximately Normal for large <i>n</i> , regardless of the
[the fundamental theorem of statistics]	distribution of the population, as long as the observations are independent.
Assumptions / Conditions for using a Normal model as the SDM for a mean:	Assumptions: 1. Independent - sampled values must be independent of each other. Conditions: a) Randomization – SRS or at least representative and not biased.
(I Ran 10 Same Size Successful Firms)	 b) 10% Condition – If sampling w/o replacement Then n ≤ 10% of the population. 2. Sample Size - n, must be large enough. (More on this later)
	Conditions: a) For now, <i>Think</i> about your sample size in the context of what you know about the population, and then <i>Tell</i> whether the Large Enough Sample Condition has been met.
Unlike proportions, if we know the true population mean, μ , we don't automatically know the	standard deviation of the population, σ .
For means the sampling distribution is centered at and its standard deviation dealines with the	the true population mean $\mu(\overline{x}) = \mu$
deviation declines with the So the Normal Model representing the SDM	the true population mean $\mu(\overline{x}) = \mu$ square root of the sample size $\sigma(\overline{x}) = SD(\overline{x}) = \frac{\sigma}{\sqrt{n}}$
for a mean is	$N\bigg(\mu, \frac{\sigma}{\sqrt{n}}\bigg)$
Law of Diminishing Returns	Larger <i>n</i> yields smaller $\sigma(\overline{x})$ therefore \overline{x} can tell us more about μ Unfortunately <i>n</i> only decreases $\sigma(\overline{x})$ at a rate of $\frac{1}{\sqrt{n}}$
Standard Error	If we don't know p or σ , then we must estimate the standard deviation of a sampling distribution with \hat{p} or s .

	$SE(\hat{p}) = \sqrt{\frac{\hat{p}\hat{q}}{n}}$ $SE(\overline{x}) = \frac{s}{\sqrt{n}}$
	\sqrt{n}
Part V- Chapter 19	Confidence Intervals for Proportions
SDM for a proportion when we	We don't know where to center our model and the best we can do
don't know p.	for $\sigma(\hat{p})$ is the $SE(\hat{p})$
	The resulting model is: $N\left(p, \sqrt{\frac{\hat{p}\hat{q}}{n}}\right)$
	$(\ \ \ \ \ \ \ \)$
	However, this still doesn't show us the value of p . The best we can
	do is to reach out with the $SE(\hat{p})$ on either side of \hat{p} to create a
	confidence interval in an attempt to capture <i>p</i> .
Statistical inference	To use the sample we have at hand to say something about the world
	at large. In this case, we utilize the SDM of \hat{p} to express our
	confidence in the results of any one sample.
Confidence interval	offers a range of plausible values for a model's parameter.
[<i>p</i> -trap]	For example: $\hat{p} \pm 2 \times SE(\hat{p})$
One-proportion <i>z</i> -interval	$\hat{p} \pm z^* \times SE(\hat{p})$
Official Name give to this type	$p = \mathcal{L} \wedge \partial D(p)$
of confidence interval]	
Margin of error	How far the confidence interval reaches out from \hat{p}
(ME)	l A
	$\hat{p} \pm z * \times SE(\hat{p})$
* Z	Critical value – the number of standard errors to move away from
	the mean of the sampling distribution to correspond to the specified
	level of confidence.
To calculate z* for a particular	. (1-confidence level)
level of confidence	$z^* = \left invNorm \left(\frac{1 - confidence\ level}{2} \right) \right $
Assumptions / Conditions to	(See your inference guide)
check before creating (and	(See your inference guide)
believing) a confidence interval	
about a proportion:	
The more confident we want to	
be	the larger the margin of error must be.
Every confidence interval is a	the ranger the margin of error mast ee.
balance between and	certainty and precision.
The time to think about your	, seesand personal pe
margin of error, to see whether	
it's small enough to be useful, is	when you design your study or experiment and decide on n .
To get a narrower interval	You need to have less variability in your sample proportion, \hat{p} ,
(decrease the <i>ME</i>) without	by choosing a larger sample, n .
giving up confidence,	
Law of Diminishing Returns	The larger the sample size, n , we have the narrower our confidence
	interval can be (at the rate of $\frac{1}{\sqrt{n}}$)
To calculate the sample size, n ,	Solve for <i>n</i> in:
necessary to reach conclusions	
J	ı

$ME = z^* \sqrt{\frac{\hat{p}\hat{q}}{n}}$
by substituting:
ME = desired margin of error (as a decimal)
z^* = critical value for desired level of confidence
\hat{p} = estimate based on experience or 0.5 (most cautious)
$\hat{q} = 1 - \hat{p}$
Testing Hypotheses About Proportions
We hypothesize a value, p_0 , to construct a model for the unknown
true population proportion, p.
$N\!\left(p_0,\sqrt{rac{p_0q_0}{n}} ight)$
Then we test the sample proportion, \hat{p} , to see if it lends support to the hypothesis or casts doubt on the viability of the model.
First find how many standard deviations \hat{p} is from p_0 (you do remember the z-score from Unit I-F don't you?)
$z = \frac{(\hat{p} - p_0)}{SD(\hat{p})} \text{where } SD(\hat{p}) = \sqrt{\frac{p_0 q_0}{n}}$
Second use our standard normal model to change z-scores into percents like we did back in Unit I-F. These percents/probabilities are now called P-values and give the probability of observing the sample proportion, \hat{p} , (or one more extreme) given the original model is true.
Proposes a parameter, p_0 , and hypothesized value for an original population model that nothing interesting happened, or nothing has changed. H ₀ : $p = p_0$ (hypothesized value)
Represents the change or difference that we are interested in (what you want to show), usually a range of other possible values. The position we will have to take if the results are so unusual as to
make the null hypothesis untenable. However, even when we reject the null hypothesis, we won't know the true value of the population parameter. (that is why we follow up with confidence intervals)
$H_{A:}p \neq p_0$ We are interested in deviations in <i>either</i> direction away from the hypothesized parameter value.
$H_{A:}p > p_0$ or $H_{A:}p < p_0$ We are interested in deviations in <i>only one</i> direction away from the hypothesized parameter value.
parameters not statistics (so no hats)
Both rely on sampling distribution models, and because the models
are the same and require the same assumptions, both check the same conditions.

Assumptions / Conditions for testing hypotheses about a proportion:	(See your inference guide)
One-proportion <i>z</i> -test	A test of the null hypothesis by referring the statistic
	$z = \frac{(\hat{p} - p_0)}{SD(\hat{p})} \text{where } SD(\hat{p}) = \sqrt{\frac{p_0 q_0}{n}}$
P-value	to a standard normal model to find a P-value. The probability of observing a result at least as extreme as ours if
[Probability-value] [% in tail(s) for a z-score]	the null hypothesis were true. A small value indicates either that the observation is improbable or that the probability calculation was based on incorrect assumptions. The assumed truth of the null hypothesis is the assumption under suspicion.
How low a P-value do we need?	Traditional: adopt a level of significance (alpha) of 10%,5%,1% etc Modern: think about what it says about the situation under consideration, and then make a decision.
A low P-value can never	
confirm that,	the model is correct
but it can convince us	(beyond a reasonable doubt) that it is wrong.
Follow up a rejection of a hypothesis with	a confidence interval that estimates the true value of the parameter
Am I surprised?	Should I reject the null hypothesis?
How surprised am I?	What's the P-value?
What would not surprise me?	Write a confidence interval for the parameter.
4-steps needed for inference problems: (based on the College Board's rubrics for the AP Exam)	(See your inference guide)
Part V- Chapter 21	More about Tests
Alpha level, α	The threshold P-value selected in advance that determines
	when we reject a null hypothesis, H_0 .
	If we observe a statistic (\hat{p}) whose P-value based on the null
Statistically significant	hypothesis is less than α , we reject that null hypothesis. When the P-value falls below the alpha level, we say that the test is
	"statistically significant" at that alpha level.
Significance level	(But this doesn't necessarily have any practical importance.)
Significance level	The alpha level is also called the significance level, most often in a phrase such as a conclusion:
	"we reject the null hypothesis at the 5% significance level."
Don't just reject/fail to reject	H ₀
at an level. Report the	Alpha/significance
as an indication of	P-value
the strength of the evidence.	
When we perform a hypothesis test we can make mistakes in	Type I error – the null hypothesis is true, but we mistakenly reject it. Type II error – the null hypothesis is false, but we fail to reject it.
two ways:	Type II error — the null hypothesis is laise, but we fall to reject it.
The more serious mistake is	depends on the situation.
Type I error, α	The error of rejecting a null hypothesis, H_0 , when in fact it is true

	(also called a "false positive").
	The probability of a Type I error is α , the chosen alpha level.
	(It happens when H_0 is true but we've had the bad luck of drawing
Type II amon 0	an unusual sample.)
Type II error, β	The error of failing to reject a null hypothesis, H_0 , when in fact it is false
	(also called a "false negative").
	The probability of a Type II error is β . It is difficult to calculate
	because when H ₀ is false, we don't know what value the
Power	parameter, p , really is. $1 - \beta$ The probability of correctly rejecting a false null hypothesis, H_0 .
	$I - p$ The probability of coffective rejecting a raise num hypothesis, I_{10} .
Reducing α to lower Type	
error will move	the critical value, p^* ,
and have the effect of increasing	II
the probability of a Type	
error,, and correspondingly	β
reducing	the power.
Effect size	$p - p_0$ How far the truth, p , lies from the null hypothesis, p_0 .
The larger the effect size, the	amallan
the chance of making a	smaller
Type error and the greater	
the of the test.	power
Whenever a study fails to reject	41442
its null hypothesis,	the test's power comes into question.
H ₀ may be false but our test is	too weak to tell.
If we reduce Type I error, we	
automatically must	increase
Type II error. But there is a	1. 1.1.4 CDM 1.1.1.1.4
way to reduce both:	we need to make both SDM curves narrower \rightarrow by decreasing the
	spread (SD) \rightarrow by increasing <i>n</i> (However the benefits are muted by
TII	the Law of Diminishing Returns)
The gives us the	hypothesis test
answer to a decision about a	
parameter; the	confidence interval
tells us the plausible values of	
that parameter.	
You can approximate a	hypothesis
by examining the confidence	- (
interval. Specifically, a	a two-sided hypothesis test with an α level of $100 - C\%$
confidence level of C%	a one-sided hypothesis test with an α level of $\frac{1}{2}(100 - C\%)$
corresponds to	
Part V- Chapter 22	Comparing Two Proportions
The sampling distribution of	A Normal model with:
$\hat{p}_1 - \hat{p}_2$ is, under appropriate	$p_1q_1 p_2q_2$
assumptions, modeled by	$\mu = p_1 - p_2 \qquad SD(p_1 - p_2) = \sqrt{\frac{111}{n} + \frac{1212}{n}}$
	$\mu = p_1 - p_2 \qquad SD(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$ (See your inference guide)
Assumptions / Conditions for	(See your interence guide)
using a Normal model as the	
SDM for a difference between	

two proportions: (Also confidence intervals and testing hypotheses)	
Two-proportion <i>z</i> -interval (confidence interval for $p_1 - p_2$)	$(\hat{p}_1 - \hat{p}_2) \pm z^* \times SE(\hat{p}_1 - \hat{p}_2) \text{ where } SE(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}$
Two-proportion <i>z</i> -test	H ₀ : $p_1 - p_2 = 0$. Because we hypothesize that the proportions are equal, we pool the groups to find an overall proportion: $\hat{p}_{pooled} = \frac{\#Success_1 + \#Success_2}{n_1 + n_2}$ and use that pooled value to estimate the standard error: $SE_{pooled}(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_{pooled}\hat{q}_{pooled}}{n_1} + \frac{\hat{p}_{pooled}\hat{q}_{pooled}}{n_2}}$ Now refer the statistic $z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{SE_{pooled}(\hat{p}_1 - \hat{p}_2)}$
	to a standard normal model to find a P-value.